
Professor Mayur Naik

CIS 7000 - Fall 2024

The Pre-Transformer Era

Slides adapted in part from Stanford’s CS224N: Natural Language Processing with Deep Learning (Spring’24)
and Chapter 8 of Jurafsky/Martin’s book “Speech and Language Processing” (3rd ed).

● Recurrent Neural Networks (RNNs)

● Variants and Applications of RNNs

● Limitations of RNNs

● The Seq2Seq Architecture

● The Attention Mechanism

Today’s Agenda

Recurrent Neural Networks

ht = σ (U ht−1 + W xt)

yt = softmax(V ht)

return y

Recurrent Neural Networks: Forward Pass

ht = σ (U ht−1 + W xt)

yt = softmax(V ht)

h0 = 0

for t = 1 to length(x) do

The matrices U, V and W are shared across time, while new values for h and y are
calculated with each time step.

At each word position t of the input, the
model takes word wt together with ht−1,
encoding information from the preceding
w1:t−1, and uses them to compute a
probability distribution over possible next
words so as to compute the model’s loss
for the next word wt+1.

Recurrent Neural Networks: Training

This idea that we always provide the model the correct history sequence to predict the next word
(rather than feeding the model its best case from the previous time step) is called teacher forcing.

Then we move to the next word, ignore
what the model predicted for the next
word and instead use the correct word
wt+1 along with the prior history encoded
to estimate the probability of word wt+2.

Recurrent Neural Networks: Backpropagation

Backpropagate over timesteps t = T, … ,1,
summing gradients as you go. This
algorithm is called “backpropagation
through time”.

Computing loss and gradients over entire
corpus at once is too expensive
(memory-wise). In practice, consider (a
batch of) sentences at a time.

In practice, often “truncated” after ~20
timesteps for training efficiency reasons.

Sequence
Classification

Applications:
sentiment analysis,
spam detection

Sequence
Labeling

Applications:
Part-of-speech
tagging,
Named entity
recognition

RNN Architectures for Different NLP Tasks

Language Modeling

Variations of RNNs

Stacking Bidirectional

The output of a lower level serves as the input to higher
levels with the output of the last network serving as the
final output. The resulting network induces representations
at differing levels of abstraction across layers.

Separate models are trained in the forward and
backward directions, with the output of each model
at each time point concatenated to represent the
bidirectional state at that time point.

e = [E xt−3; E xt−2; E xt−1]

h = σ (W e)

z = U h

y = softmax(z)

Feedforward vs. Recurrent Neural Network as Language Model

et = E xt

ht = σ (U ht−1 + W et)

yt = softmax(V ht)

Feedforward Neural Network Recurrent Neural Network

ˆ

ˆ

Pros/Cons of Recurrent Neural Network as Language Model

et = E xt

ht = σ (U ht−1 + W et)

yt = softmax(V ht)

Pros:
- Can process any length input!
- Computation for step t can (in theory)

use information from many steps back.
- Model size (W) doesn’t increase for

longer input context.
- Each xi is multiplied by same weights in

W, so there is symmetry in how inputs
are processed.

Cons:
- Recurrent computation is slow (cannot

be parallelized).
- In practice, it is difficult to access

information from many steps back.
Vanishing Gradient Problem!
RNN extensions such as LSTMs (or other
varieties like GRUs) are commonly used.

ˆ

Effect of Vanishing Gradient on RNN-Based Language Model

LM task: When she tried to print her tickets, she found that the printer was out of toner. She
went to the stationery store to buy more toner. It was very overpriced. After installing the toner
into the printer, she finally printed her ____________

To learn from this training example, the RNN-LM needs to model the dependency between

“tickets” on the 7th step and the target word “tickets” at the end.

But if the gradient is small, the model can’t learn this dependency. So, the model is unable to
predict similar long-distance dependencies at test time.

More on vanishing/exploding gradient problems in training RNNs: R. Pascanu et al. On the
difficulty of training recurrent neural networks. ICML 2013.

https://arxiv.org/abs/1211.5063
https://arxiv.org/abs/1211.5063

Taking an input sequence and translating it to an output
sequence that is of a different length than the input, and
doesn’t align with it in a word-to-word way.

Many applications: machine translation, summarization,
question-answering, dialogue, …

Encoder-Decoder or Seq2Seq Architecture

I. Sutskever et al. Sequence to Sequence Learning with Neural Networks. NeurIPS 2014.

https://arxiv.org/abs/1409.3215

Illustrative Example: Machine Translation

where g is a
stand-in for some
flavor of RNN.

Encoder-Decoder RNN, More Formally

The final hidden state of the encoder RNN, hn
e, serves as the context

for the decoder in its role as h0
d in the decoder RNN, and is also made

available to each decoder hidden state.

c = hn
e

h0
d = c

hi
d = g(yi-1, hi−1

d, c)

yi = softmax(hi
d)ˆ

ˆ

The Bottleneck Problem

Requiring the context c to be only the encoder’s final hidden state forces
all the information from the entire source sentence to pass through this
representational bottleneck!

D. Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015.

https://arxiv.org/pdf/1409.0473

Attention Mechanism: A Solution to the Bottleneck Problem

Requiring the context c to be only the encoder’s final hidden state forces
all the information from the entire source sentence to pass through this
representational bottleneck!

D. Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015.

c = hn
e

h0
d = c

hi
d = g(yi-1, hi−1

d, ci)

yi = softmax(hi
d)ˆ

ˆ

ci = f(h1
e, …, hn

e)Instead of a static context vector c, dynamically generated a context
vector ci for each decoding step i that takes all encoder hidden states
into account in its derivation.

https://arxiv.org/pdf/1409.0473

Finally compute a fixed-length context vector for the
current decoder state by taking a weighted average
over all the encoder hidden states.

Dot-Product Attention

First step in computing ci: How
much to focus on each encoder
state hj

e, or how relevant it is to
the decoder state captured in hi-1

d.

score(hi-1
d, hj

e) = hi-1
d . hj

e

Then normalize the weights.

αi j = softmax(score(hi-1
d, hj

e))

j

ci = ∑ αi j hj
e

More sophisticated scoring function: hi-1
d W hj

e using learned weights W.

Experimental Results With vs. Without Attention Mechanism

D. Bahdanau et al. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015.

Performance of RNN encoder-decoder
models trained on sentences of length
upto 30 or 50:

RNNsearch - with attention
RNNenc - without attention

https://arxiv.org/pdf/1409.0473

● Sept 11 Lecture: The Transformer Architecture: Part I (Impact of Transformers;
From Recurrence to Attention; Transformer block).

Up Next …

